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Abstract— We develop a remarkably tight upper bound on
the performance of a parameterized family of bounded angle
maximum-likelihood (BA-ML) incomplete decoders. The new
bound for this class of incomplete decoders is calculated from the
code’s weight enumerator, and is an extension of Poltyrev-type
bounds developed for complete ML decoders. This bound can also
be applied to bound the average performance of random code
ensembles in terms of an ensemble average weight enumerator.

We also formulate conditions defining a parameterized family
of optimal incomplete decoders, defined to minimize both the total
codeword error probability and the undetected error probability
for any fixed capability of the decoder to detect errors. We
illustrate the gap between optimal and BA-ML incomplete
decoding via simulation of a small code.

I. INTRODUCTION

Practical coding systems often employ a powerful error-

correcting code to combat noise, together with another code

used to detect errors only. However, calling one code an

error-correcting code and another an error-detecting code is

a misnomer, because both types of codes inherently possess

both correction and detection capabilities. For any fixed code

its relative effectiveness at correcting and detecting errors

depends on how it is decoded.

Some codes, such as Reed-Solomon codes decoded by

standard algebraic methods, have combined correction and

detection capabilities that are amenable to analysis. Various

constructions of low-density parity check (LDPC) codes, de-

coded by iterative message passing with codeword validation,

combine capacity-approaching error correction with an ability

to detect most uncorrectable errors. But these are just par-

ticular solutions to the general problem of determining the

tradeoffs that must be made to simultaneously achieve both

good error correction and error detection.

Our goal is to simultaneously minimize both the overall

codeword error probability Pw and the portion Pu of this error

probability that corresponds to undetected errors. In this paper

we explore this problem for soft decoding of block codes C
of length n with M equally likely, equal-energy codewords

ci, i = 0, ...,M − 1, represented in n-dimensional Euclidean

space and received in the presence of additive white Gaussian

noise (AWGN). As noted above, the tradeoff of detected and
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undetected error rates depends on both the code C and the

(generally incomplete) decoder D used to decode it. A more

incomplete decoder can lower the undetected error rate Pu at

the expense of increasing the overall word error rate Pw.

II. FAMILIES OF INCOMPLETE DECODERS

For any code C and a complete or incomplete decoder D,

we define Pd to be the detected error probability (erasure

probability of the decoder) and Pu to be the undetected error

probability. The total probability of codeword error is then

given by Pw = Pu + Pd. There are many good bounds on

the minimum word error probability PML
w achievable with

maximum-likelihood (ML) decoding. In this paper we wish

to characterize fundamental tradeoffs between Pw and its two

components Pu, Pd.

We define three interesting families of incomplete decoders:

• A bounded distance maximum-likelihood (BD-ML) de-

coder DBD(Dd) is characterized by its maximum de-

coding distance Dd. If the Euclidean distances from the

n-dimensional received word x to each of the codewords,

denoted by Di = ||x − ci||2, are all greater than Dd,

then DBD(Dd) outputs an erasure (i.e., a detected error).

Otherwise it outputs the codeword ci∗(x) closest to x,

which is the i∗(x) that minimizes Di, i = 0, ...,M − 1.

• A bounded angle maximum-likelihood (BA-ML) decoder

DBA(θd) is characterized by its maximum decoding an-

gle θd. If the Euclidean angles between the n-dimensional

received word x and each of the codewords, denoted

by θi = cos−1 (x · ci/||x||), are all greater than θd,

then DBA(θd) outputs an erasure (i.e., a detected error).

Otherwise it outputs the codeword ci∗(x) that minimizes

θi, i = 0, ...,M − 1.

• A bounded reciprocal likelihood ratio maximum-
likelihood (BRLR-ML) decoder D∗(Λd) is characterized

by a maximum reciprocal likelihood ratio Λd. If the ratios

of the average likelihood p̄(x) = (1/M)
∑M−1

i=0 pi(x)
for receiving x to the conditional likelihoods pi(x)
given each of the possible codewords, denoted by Λi =
p̄(x)/pi(x), are all greater than Λd, then D∗(Λd) outputs

an erasure (i.e., a detected error). Otherwise it outputs the

codeword ci∗(x) that minimizes Λi, i = 0, ...,M − 1.

Note that our definitions of BD-ML and BA-ML decoders

do not restrict them to maximum decoding distances Dd or



angles θd corresponding to non-overlapping bounded decoding

regions; if the bounded decoding regions around two or more

codewords overlap, the ML rule is used. This convention

allows the BD-ML and BA-ML decoders, as well as the

BRLR-ML decoders, to all approach optimal ML performance

(minimizing Pw) on the AWGN channel, whenever their

decoding limits Dd or θd or Λd are suitably large. However,

these three families differ in their effectiveness of trading off

Pw and Pu when their decoding limits are small enough to

permit them to detect errors.

The BRLR-ML decoders D∗(Λd) are optimal incomplete
decoders in the sense that for a given code C they minimize

both Pw and Pu for a given decoder erasure probability Pd.

This is justified as follows. An optimal incomplete decoder

D∗ should follow the ML decoding rule except in its erasure

region E . If a differential volume dx around received word x
were assigned to the erasure region E , the differential increase

in Pw would be dPw = pi∗(x)(x) dx. The corresponding

increase in Pd would be dPd = p̄(x) dx. An optimal family

of incomplete decoders should minimize the increase of Pw

with Pd at every possible operating point. This implies that

the erasure region for a given Pd should consist of those

points x which minimize dPw/dPd, or alternatively maximize

dPd/dPw = p̄(x)/pi∗(x)(x) = Λi∗(x). In other words, define

E(Λd) = {x : Λi∗(x) ≤ Λd}, and let the parameter Λd

vary from 0 to 1. The corresponding parameterized values

of Pw and Pd are given by: Pd(Λd) =
∫
E(Λd)

p̄(x) dx, and

1 − Pw(Λd) =
∫
Ec(Λd)

pi∗(x)(x) dx where Ec(Λd) is the

complement of E(Λd).
Figure 1 gives a comparison of the tradeoffs among Pu, Pd,

and Pw for the (8, 4) extended Hamming code with BD-ML,

BA-ML and optimal incomplete decoding. These results were

obtained by simulation.
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Fig. 1. Comparison of Pu, Pd, Pw tradeoff curves for the (8, 4) extended
Hamming code with BD-ML, BA-ML and optimal incomplete decoding.

The tradeoff of most interest is Pu versus Pw, as shown by

the blue curves. There are three clusters of curves, obtained

at three values of AWGN signal-to-noise ratio Eb/N0 as

indicated. The three values of Eb/N0 were chosen to produce

word error probabilities PML
w under ML decoding around

10−3, 10−4, and 10−5. Within each cluster are three curves,

corresponding to three families of decoders. From left to right

in each cluster, they are the optimal incomplete (BRLR-ML)

decoders, the BA-ML decoders, and the BD-ML decoders.

The blue curves are standard tradeoff curves, where the

lower left corner of the plot is the unachievable region for a

given code and decoder at a given Eb/N0. Their negative slope

shows that one can achieve a lower Pu only at the price of a

higher Pw, and vice versa. There are limits in both directions.

Pw cannot be made smaller than the Pw achieved by the ML

decoder (at which point Pu = Pw). In the other direction,

there is the trivial limit that Pu = 0 only if Pw = 1, so the

right edge of this graph is a vertical asymptote for all the blue

curves.

The curves in Fig. 1 show significant differences in the

Pu versus Pw tradeoff for the various decoder families, even

though all of them approach the same ML performance when

their decoding limits are large enough. Optimal incomplete

decoders achieve the best tradeoff, of course, and BA-ML

decoders outperform BD-ML decoders at least for this code.

The red curves show the decoders’ erasure or detection

probabilities, Pd = Pw − Pu. Note that Pd is zero for the

ML decoder, and otherwise Pd is nearly equal to Pw. The

detected error probability Pd is generally of less interest than

the undetected error probability Pu, and so the remainder of

this paper will focus on the Pu versus Pw (blue) tradeoff

curves.

III. PERFORMANCE ANALYSIS FOR BA-ML DECODERS

In the remainder of this paper we restrict our attention

to a performance analysis of BA-ML decoders, which are

more amenable to analytical bounds and approximations than

optimal incomplete decoders. With BA-ML decoding, ML

word error probability PML
w is achieved as θd → π, and in fact

for all decoding angles θd ≥ θmax, where θmax is the angle

of the smallest cone circumscribing the true codeword’s ML

Voronoi region. For such values of θd, Pw = Pu = PML
w and

Pd = 0, and their approach to these ML limits as depicted

in Fig.1 is obtained by evaluating the performance of BA-

ML decoders DBA(θd) for decoding angles θd approaching

θmax from below. For any θd ≤ θmin, where θmin is the

angle of the largest cone inscribed in the true codeword’s

ML Voronoi region, the decoding cones of the incomplete

decoder DBA(θd) are non-overlapping, and evaluation of the

probability of correct decoding, Pc = 1−Pw, simplifies to the

probability that the received word falls within the decoding

cone of angle θd around the true codeword. For θd = θmin

the word error probability Pw reaches that of a traditional

bounded angle decoder, PBA
w > PML

w . Further reduction of

Pw from PBA
w toward PML

w is obtained for larger decoding

angles, θmin < θd < θmax, where evaluation of Pw and Pu is

more complicated.

To analyze BA-ML decoders we follow the general ap-

proach outlined in [4], which for ML decoders includes the



union bound, the sphere packing lower bound, a Poltyrev-type

upper bound [2], [3], and many more complicated lower and

upper bounds as special cases. See also [5], [6], [7], [8], and

references therein, for discussions of various good bounding

techniques applicable to ML decoding.

The approach in [4] follows Shannon [1] and considers the

differentially thin conical shell dSn(θ) between two circular

cones of half-angles θ and θ + dθ, each with vertex at

the origin and axis passing through the correct codeword

c0, as shown in Figure 2. This shell contains a fraction

θd

θ

θmin

Pc

Pd

P<
u

θmax
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u

Fig. 2. Illustration of the conical angle geometry underlying our analysis of
BA-ML decoding. Contributions to F (θ) are shown in wide arcs; contribu-
tions to F (θ; θd) consist only of the segments shown in red.

dΩn(θ) = n−1
n

Γ(n/2+1)

Γ( n+1
2 )

√
π
(sin θ)n−2dθ of the total solid angle

in n-dimensional space. For a given code, a certain fraction

of the shell’s solid angle (a) falls outside the true codeword’s

ML Voronoi region, or, equivalently, (b) belongs to a different

codeword’s ML Voronoi region. This fraction is called the

code geometry function F (θ). It depends on the geometry of

the code, but not on the Gaussian noise distribution. The exact

ML word error probability PML
w can in principle be evaluated

in terms of F (θ) as

PML
w =

∫ π

0

F (θ)p0(θ) dθ

where p0(θ) dθ is the probability that the noise from the

channel deflects the received word into the differential shell

at angle θ from the true codeword c0.

Various upper and lower bounds on PML
w were obtained

in [4] by evaluating this integral with various upper and

lower bounds on F (θ) substituted for the true F (θ). Here

we consider only a Poltyrev-type upper bound derived from a

first-order upper bound F+(θ) similar to a union bound based

on the code’s weight enumerator Aw:

PML
w ≤

∫ π

0

F+(θ)p0(θ) dθ

where

F (θ) ≤ F+(θ)
�
= min

[
1,

∑
w>0

Aw

∫ βw(θ)

0

dΩn−1(θ1)

]
,

where

βw(θ) = cos−1 (tanψw cot θ)

and

ψw = sin−1
(√

w/n
)

is half the angle between the true codeword and

a codeword at Hamming distance w from it. Here

cos−1(·) �
= cos−1 (min[1, max[−1, ·]]) denotes the inverse

cosine function applied to a clipped argument.

In our present application to incomplete BA-ML decoders,

the conditions (a) or (b) defining F (θ) are no longer equiva-

lent. We find it convenient to define a code geometry function

F (θ; θd) for BA-ML decoders to be the fraction of the conical

shell at angle θ from the true codeword that (c) falls within

the BA-ML decoding region of an incorrect codeword. This

F (θ; θd) is directly useful for computing the undetected error

probability of BA-ML decoders.

If a BA-ML decoder DBA(θd) is used instead of the

ML decoder DML = DBA(θmax), then it is convenient

to evaluate Pw(θd), Pu(θd), Pd(θd), each as a sum of two

components, one resulting from received words with angle

θ ≤ θd and the second from received words with angle θ > θd,

where θ is the angle between the received word and the true

transmitted codeword. For this decomposition, it is convenient

to deal temporarily with the probability of correct decoding,

Pc(θd) = 1 − Pw(θd), instead of Pw(θd), and to introduce

P<
tot(θd)

�
=

∫ θd

0
p0(θ) dθ and P>

tot(θd)
�
=

∫ π

θd
p0(θ) dθ as the

total probabilities that the received word lands in these two

regions. These total probabilities decompose as follows:

P<
tot(θd) = Pc(θd) + P<

u (θd)

P>
tot(θd) = Pd(θd) + P>

u (θd)

where the “<” and “>” components of Pu(θd) are contributed

by received words within the two regions. Refer again to Fig. 2

for a Venn-diagram depiction of the four components Pc(θd),
Pd(θd), P<

u (θd), and P>
u (θd) in the conical geometry. We

note that for a BA-ML decoder, there are no contributions

to Pc(θd) for θ > θd, and no contributions to Pd(θd) for

θ ≤ θd . Thus only Pu(θ) is decomposed into “<” and “>”

components. Finally, noting that the (unit) probability of the

entire space of received words decomposes alternatively as

P<
tot(θd) + P>

tot(θd) = 1 = Pc(θd) + Pw(θd), we rewrite the

first of these equations in terms of Pw(θd) rather than Pc(θd):

Pw(θd) = P>
tot(θd) + P<

u (θd)

The total undetected error probability is determined from the

sum of its two components:

Pu(θd) = P<
u (θd) + P>

u (θd)

We find it convenient to first evaluate P>
tot(θd), then bound

or approximate the two components of the undetected error

probability, P<
u (θd) and P>

u (θd), and finally use the last

three equations to calculate the corresponding bounds or

approximations to Pu(θd), Pw(θd), and Pd(θd).



A. Bounds on P<
u (θd) and P>

u (θd)

As with our earlier bounds on the error probability of

ML decoders, it is useful to express the two components of

the undetected error probability as integrals with respect to

the channel probability measure of a code geometry function

F (θ; θd) defined for BA-ML decoders as the fraction of a

differentially thin conical shell at angle θ that is decoded to

an incorrect codeword (not erased):

P<
u (θd) =

∫ θd

0

F (θ; θd) dP (θ)

P>
u (θd) =

∫ π

θd

F (θ; θd) dP (θ)

First we note that F (θ; θd) = 0 for all θ ≤ θd if θd ≤
θmin, and P<

u (θd) = 0 in this case. Thus, non-trivial bounds

or approximations to P<
u (θd) are only needed when θd >

θmin, i.e., when the bounded-angle decoding cones overlap

one another.

The BA-ML decoder simply narrows the decoding region

for the true codeword by applying an additional condition

θ ≤ θd beyond the “nearest codeword” condition applied

by the ML decoder. Since any received word contributing

to the undetected error probability of an ML decoder must

necessarily be at least as close to an incorrect codeword as

to the true codeword, the code geometry function F (θ; θd)
defined for a BA-ML decoder is equivalent to that defined

previously for the ML decoder for all received word angles

θ ≤ θd, i.e.,

F (θ; θd) = F (θ) for all θ ≤ θd

Thus, the corresponding bound on P<
u (θd) is a straightforward

extension of the Poltyrev-type upper bound derived previously

for ML decoders, with only a trivial restriction of the interval

of integration.

P<
u (θd) ≤

∫ θd

0

F+(θ)p0(θ) dθ

The bound on P>
u (θd) requires a small generalization when

a BA-ML decoder is used in place of an ML decoder. Again

we are interested in evaluating a Poltyrev-type upper bound

obtained from an upper bound on F (θ; θd) based on the code’s

weight enumerator Aw:

P>
u (θd) ≤

∫ π

θd

F+(θ; θd)p0(θ) dθ

where F+(θ; θd) is a first-order upper bound to F (θ; θd) given

by

F (θ; θd) ≤ F+(θ; θd)
�
= min

[
1,

∑
w>0

Aw

∫ βw(θ;θd)

0

dΩn−1(θ1)

]

with

βw(θ; θd) = cos−1

(
cos(min[θ, θd]) − cos θ cos 2ψw

sin θ sin 2ψw

)

This is a generalization of the corresponding upper bound

obtained in [4] for ML decoders. The cos(min[θ, θd]) term in

the expression for βw(θ; θd) simplifies to cos θd for all values

of θ > θd needed in the evaluation of the upper bound on

P>
u (θd), or to cos θ for all values of θ ≤ θd needed in the

evaluation of the upper bound on P<
u (θd). In the latter case,

the argument of cos−1(·) reduces to tanψw cot θ, the same

expression used previously to define βw(θ) for ML decoding.

Thus, the more general term cos(min[θ, θd]) is convenient

because it can be used to bound either P<
u (θd) or P>

u (θd).

Figure 3 compares the Poltyrev-type upper bounds obtained

from the code geometry function F (θ; θd) with the results in

Fig. 1 obtained by simulation for the (8, 4) extended Hamming

code with BA-ML decoding. Also shown for comparison in
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Fig. 3. Comparison of bounds and simulations of the Pu, Pw tradeoff curves
for the (8, 4) extended Hamming code with BA-ML decoding, at values of
Eb/N0 selected to produce ML word error probabilities of about 10−3, 10−4,
and 10−5. Also shown for comparison is the same Pu, Pw tradeoff under BA-
ML decoding for the (24, 12) extended Golay code operating at an Eb/N0

producing an ML word error probability of about 10−4.

this figure is the tradeoff curve obtained from the bound for the

(24,12) extended Golay code operating at an Eb/N0 producing

an ML word error probability close to that of the middle curves

for the extended Hamming code.

Fig. 3 illustrates the phenomenally close approximation to

true BA-ML performance obtained from our Poltyrev-type

bound, as we have extended it to the family of incomplete

BA-ML decoders. In this figure the bound is virtually in-

distinguishable from the curve obtained by simulation. It is

also interesting that the Pu versus Pw tradeoff curve for

the extended Golay code (obtained from the bound) appears

very similar to that of the much smaller extended Hamming

code, as long as the channel operating points (Eb/N0) for

the two codes are selected to yield similar ML performance.

This similarity might be connected to the fact that both the

Hamming and Golay codes are nearly perfect, or it might have

wider applicability (a subject for further research).



B. Bounds for Random Code Ensembles
Both P<

u (θd) and P>
u (θ) are linear functionals of their

respective code geometry functions, and the equations for

determining Pu(θd), Pw(θd), Pd(θd) from P<
u (θd), P>

u (θ)
are linear also. Thus, if a specific code C is replaced by a

random ensemble of codes, the bounds derived for specific

codes remain valid for the ensemble averages of these error

probabilities, P̄<
u (θd), P̄>

u (θ), P̄w(θd), P̄d(θd), if the corre-

sponding bounds on F (θ; θd) are replaced by their ensemble

averages.
A completely random code ensemble is a special case for

which bounds are not needed, because the ensemble averages

can be computed exactly. In this case, the ensemble average

code geometry function is evaluated as

F̄ (θ; θd) = 1 − [1 − Ωn(min[θ, θd])]
M−1

because 1 − F̄ (θ; θd) is simply the probability that none of

M − 1 randomly selected alternatives to the true codeword

falls closer in angle to the received word x than: (a) maximum

angle θ if θ ≤ θd, or (b) maximum angle θd if θ > θd.

The corresponding ensemble average error probabilities for

the random code ensemble are evaluated as:

P̄w(θd) = 1 −
∫ θd

0

[1 − Ωn(θ)]M−1
p0(θ) dθ

P̄u(θd) = 1 −
∫ π

0

[1 − Ωn(min[θ, θd])]
M−1

p0(θ) dθ

P̄d(θd) = [1 − Ωn(θd)]
M−1

∫ π

θd

p0(θ) dθ

Figure 4 plots tradeoff curves showing ensemble average

P̄u(θd) versus P̄w(θd) for BA-ML decoding of random codes

of length n = 8 and dimension k = 4. The tradeoff curves
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Fig. 4. Tradeoff curves showing ensemble average P̄u(θd) versus P̄w(θd)
for BA-ML decoding of random codes of length n = 8 and dimension k = 4.

in Fig. 4 are considerably worse than those in Fig. 1 or

Fig. 3 for the nearly perfect (8, 4) extended Hamming code.

This indicates that a completely random code ensemble does

not provide a very useful estimate of the achievable BA-ML

performance tradeoffs for such small values of n and k.

IV. CONCLUSION

We have taken a preliminary look, via simulations and

bounds, at the inherent tradeoffs between a code’s ability to

correct and detect errors, depending on the type of decoder

used. We looked at three parameterized families of incomplete

decoders, all of which approach ML performance in the limit

of complete decoding when they lose any capability for error

detection. Optimal incomplete decoders were defined to yield

the best Pu versus Pw tradeoff curve, but performance bounds

for this family of decoders are intractable and simulations are

only practical for small codes. The BA-ML decoders constitute

a sub-optimal family for which extremely tight Poltyrev-type

upper bounds on performance were obtained. Such bounds

also constitute (looser) upper bounds on the performance of

optimal incomplete decoders.
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